Session 4.2 Posters (Thursday AM)

Session 4.2 Posters

Session Chair:  TBD

Location (2nd floor of hotel):  Berkeley (Posters 1-15), Swannanoa (Posters 16-30), Victoria (Posters 31-45)

Posters Thursday AM
EntryTitlePresenter First NamePresenter Last NameAffiliationAbstract
4.2.14 kHz high-dynamic-range Thomson scattering on LM26SimonCoopGeneral Fusionhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_SimonCoop_Abstract.pdf
4.2.2Fast Photodiode Arrays for Monitoring Reconnection Dynamics in PHASMATomRoodWest Virginia Universityhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Draft_Final1.pdf
4.2.3A Magnetic Diagnostic Suite for the Pegasus-III ExperimentJoshuaReuschUniversity of Wisconsin-Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Reusch_Abstract.pdf
4.2.4Implementation of an Impurity Diagnostic Suite on the Pegasus-III ExperimentCuauhtemocRodriguez SanchezUW-Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_CRS_Final.pdf
4.2.5Design and Characterization of the Time Resolved Spectrometer (OPSpecTR) for the NIF Iron Opacity CampaignYekaterinaOpachichLawrence Livermore National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/OPSpecTRcal_Abstract_v2.pdf
4.2.6Excited state population modeling for entangled two-photon absorption and fluorescenceDavidSmithUniversity of Wisconsin-Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_DSmith_Abstract.pdf
4.2.7
4.2.8Development of Step Wedge Ensembles for Spectral Verification in Neutron Imaging SystemsEmilyMendozaLos Alamos National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/mendHTDPabst.pdf
4.2.9Enhanced Efficiencies of Hard X-Ray Transmission Crystal Spectrometers by Utilizing Multiple Stacked CrystalsJohnSeelyNational Institue of Standards and Technologyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Seely_Abstract.pdf
4.2.10
4.2.11Development of Improved Higher-Order Correction for the NIF Opacity SpectrometerBryceHobbsThe University of Texas at Austinhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Hobbs_Abstract.docx.pdf
4.2.12
4.2.13Quantifying x-ray diffraction with the FIDDLE diagnostic at NIFLaura RobinBenedettiLLNLhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Benedetti_Abstract.pdf
4.2.14Improvements on spectroscopic analysis code for spatially-resolved x-ray absorption data from the COAX platformDzaferCamdzicLos Alamos National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/APS-DPP-Abstract-APS-DPP-Abstract.pdf
4.2.15Diagnosing multi-ion-species plasmas through spatially resolved spectroscopy and collisional-radiative modelingAmeerMohammedPrinceton Plasma Physics Laboratory; Virginia Polytechnic Institute and State Universityhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Ameer_Final_HTPD_Abstract_Feb9_2024.pdf
4.2.16The Motional Stark Effect Diagnostic for ITERElizabethFoleyNova Photonics, Inc.https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Foley_Abstract.pdf
4.2.17A Modular, High Dynamic Range Passive Neutron Dosimeter and Imaging DiagnosticThomasSchmidtLos Alamos National Labhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD-Abstract-2024-Thomas-Schmidt.pdf
4.2.18Towards real-time measurement of isotope ratio and RF electric field with optical emission spectroscopyGilsonRonchiOak Ridge National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_G_Ronchi_Abstract.pdf
4.2.19
4.2.20Wisconsin In Situ Penning (WISP) high brightness neutral partial pressure gauges installed at D3D and operated at W7-XKoleRakersUniversity of Wisconsin Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Rakers_Abstract_Final.pdf
4.2.21Implementation of a Real-Time MSE SystemFredLevintonNova Photonics, Inc.https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_DiCicco_Abstract.pdf
4.2.22Diagnostics for General Fusion’s LM26 MachineHenryGouldGeneral Fusionhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Abstract_HenryGould.pdf
4.2.23High resolution, sub-picosecond x-ray spectrometer for studying short pulse laser generated plasmaRonnieShepherdLawrence Livermore National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Shepherd_Abstract.pdf
4.2.24Upgrades to x-ray microcalorimeter fusion diagnostic to improve calibration, spectral bandwidth selection, and count rate adjustmentStephKubalaLawrence Livermore National Laboratory (LLNL)https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Kubala_Abstract_rev2.pdf
4.2.25Al and W radiation survey to constrain ⟨Te⟩ and Te(r,t) measurement with adaptive muti-energy SXR diagnostics in MST and WESTLuisDelgado-AparicioPPPLhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Delgado-Aparicio_Abstract.pdf
4.2.26Ultrafast laser-driven x-pinchesHeathLeFevreUniversity of Michiganhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_HL_Abstract.pdf
4.2.27A Poloidal High-k Scattering Diagnostic for NSTX-UCalvinDomierUniversity of California, Davishttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Domier_Abstract.pdf
4.2.28Diagnostic development and needs for laser driven MeV X-ray RadiographyDeanRusbyLawrence Livermore National Lab.https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Rusby_2024_HTPD_Abstract.pdf
4.2.29Integration of Fixed-Frequency and FM-CW Reflectometers for Coincident Turbulence Measurements on LTX-βShigeyukiKubotaUniversity of California at Los Angeles, Department of Physics and Astronomyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_SKubota_Abstract_v2.pdf
4.2.30Development and Commissioning of the Tangential X-ray Crystal Spectrometer (XCS) on Aditya-U TokamakMalayChowdhuriInstitute for Plasma Research, Gandhinagar, Indiahttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Malay_Abstract.pdf
4.2.31Progress on a High Throughput, Subpicosecond X-Ray Streak Tube Design for Laser-Plasma Interaction ExperimentsAnthonyRaymondLaboratory for Laser Energeticshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Raymond_Abstract-v3.pdf
4.2.32New Pulse Dilation System on the Gamma Reaction History DiagnosticHermannGeppert-KleinrathLos Alamos National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_H_Geppert-Kleinrath_Abstract.pdf
4.2.33Overview of ITPA R&D Diagnostics Activities in Support of the ITER Research PlanDidierMazonCEAhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Mazon_Abstract-last.pdf
4.2.34Development of a large field of view radiography capability for MagLIF preheat experiments on the Omega EP laser facilityMatthewGomezSandia National Laboratorieshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Gomez_EPradiography.pdf
4.2.35Diverting current to drive an X-pinch for point projection radiography on the Z facilityHannahHassonSandia National Laboratorieshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Gomez_XpinchDevelopment.pdf
4.2.36Rapid Calibration Plan for NIF’s Near Backscatter Imager (NBI)HenryMeyerLawrence Livermore National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_HJM_NBI-Calibration_Abstract.pdf
4.2.37Fast Neutron and Gamma Ray Scintillation from β-Ga2O3Ke-XunSunUniversity of Nevada, Las Vegashttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Ke-Xun_Sun_abstract.pdf
4.2.38Assessment of the Calibration of the Scattered Light Time-history Diagnostic (SLTD) at the National Ignition FacilityStevenKostickUniversity of Rochesterhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD-2023-Contributed-Abstract.pdf
4.2.39A real time diamond spectrometer for ion temperature profile measurements for the SPARC tokamak MarcoPetruzzoUniversità degli Studi di Milano - Bicocca https://htpd2024.ornl.gov/index.php?gf-download=2024/03/HTPD_real_time_MP_rev2.docx.pdf&form-id=2&field-id=8&hash=53195c00f37faea450beaf3ad0157f4c935264f2b578d2971f5337ba84e620bc
4.2.40Platform development towards ultra-intense laser-based simultaneous MeV x-ray and neutron multimodal radiographyFranziskaTreffertLawrence Livermore National Laboratoryhttps://htpd2024.ornl.gov/index.php?gf-download=2024/03/Multimodal-Radiography_HTPD2024_Treffert.pdf&form-id=2&field-id=8&hash=31e8683ef8cccd0428a53b0b01f69bc1ed722987578ca394de99b41b86b11d42