Session 3.2 Posters (Wednesday AM)

Session 3.2 Posters

Session Chair:  TBD

Location (2nd floor of hotel):  Berkeley (Posters 1-15), Swannanoa (Posters 16-30), Victoria (Posters 31-45)

Posters Wednesday AM
EntryTitlePresenter First NamePresenter Last NameAffiliationAbstract
3.2.1Optimized Collection Optic Design for Divertor Thomson scattering diagnostics in KSTARGeun HyeongParkUniversity of Science and Technology, Korea institute of Fusion Energyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_G.H.-Park_Abstract.pdf
3.2.2

The General Atomics Laboratory for Developing Rep-rated Instrumentation  and Experiments with Lasers (GALADRIEL)

MarioManuelGeneral Atomicshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Manuel_Abstract.pdf
3.2.3Accelerated MICER analysis leveraging Machine LearningAdriannaAnguloPrinceton Plasma Physics Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024Abstract4.pdf
3.2.4ELM-Resolved Measurements of Tungsten Erosion and Heat Flux During DIII-D Small Angle Slot Divertor ExperimentsAlecCacherisUniversity of Tennessee Knoxvillehttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/16528_240131_cacheris_CC9.pdf
3.2.5Bayesian Analysis for the Collective Thomson scattering Diagnostics System in a modular X-pinch plasma deviceYONG SUNGYOUKorea Advanced Institute of Science and Technology (KAIST)https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_YOU-Yong-Sung_Abstract.pdf
3.2.6Simultaneous voltage and current measurement for the X-pinch device using the optics-based measurement systemsSeongminChoiKAISThttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_ChoiSeongmin_Abstract.pdf
3.2.7Fiber Optic Bolometer Array Design and DeploymentSeungsupLeeOak Ridge National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Seungsup_Lee_Abstract.pdf
3.2.8High-energy ion diagnostics using a multi-layered scintillation detector for laser-driven ion acceleration experimentsToshiharuYasuiGraduate School of Engineering, Osaka Universityhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/2修正HTPD2024_Name_Abstract_yasui_0202.pdf
3.2.9

Development of a toroidally resolved broadband ECE imaging system for measurement of turbulent fluctuations on KSTAR

Dong-KwonKimKorea Institute of Fusion Energy (KFE)/ POSTECHhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_DongkwonKim_Abstract.pdf
3.2.10Design of a low frequency, density profile reflectometer system for the MAST-U spherical tokamakTerryRhodesUCLAhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Rhodes_HTPD_abstract_2024_v2.pdf
3.2.11
3.2.12Real-time measurement system for two-color CO2 laser interferometer and its demonstration on density feedback control in JT-60SAYoshiakiOhtaniNational Institutes for Quantum Science and Technologyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Y_Ohtani_Abstract_rerere.pdf
3.2.13Classification of Tokamak Operation Mode: Application of Machine Learning Technique using Edge Reflectometer on the KSTARBoseongKimKorea Institute of Fusion Energyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_BoseongKim_Abstract_v1.pdf
3.2.14Advances in background estimation for robust thermal and fast ion monitoring using collective Thomson scatteringTheoVERDIERDTU Physics - Technical University of Denmark, Department of Physicshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Verdier_Abstract.pdf
3.2.15Integration and Performance of the Pilatus3 Detector for Soft X-ray Diagnostics on TCVSilviaMasilloEcole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerlandhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Masillo_Abstract.pdf
3.2.16Electron temperature profile measurement by soft x-ray diagnostics system in integrated commissioning phase of JT-60SARyuichiSanoNational Institutes for Quantum Science and Technologyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Sano_Abstract20240202.pdf
3.2.17COSMONAUT: a Compact Spectrometer for Measurements Of Neutrons at the ASDEX Upgrade TokamakMassimoNocenteUniversity of Milano-Bicoccahttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Nocente_HTPD_2024_COSMONAUT_v2.pdf
3.2.18Using Convolutional Neural Networks to detect Edge Localized Modes from Doppler Backscattering DIII-D dataNathanTeo1) Nanyang Technological University 2) Agency for Science, Technology and Research (A*STAR)https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/N.Q.X.-Teo-HTPD2024_Abstract_V3.docx
3.2.19Fast Doppler Spectroscopy System for Impurity Dynamics Study in the ADITYA-USharvilPatelPandit Deendayal Energy University, Gandhinagar 382 426, Indiahttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Sharvil_Patel_Abstract_final.pdf
3.2.20Overview of the Preliminary Design of SPARC’s Neutron Diagnostic SystemsPrasoonRajCommonwealth Fusion Systemshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Raj_Abstract.pdf
3.2.21Development of a Q-band frequency tunable DBS system for pedestal and SOL density fluctuation and flow measurements in the DIII-D TokamakJuliusDambaUniversity of California, Los Angeles (UCLA)https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Julius_Damba_Abstract.pdf
3.2.22Design and commissioning of resistive foil bolometer diagnostics on the ST40 tokamakDanielHarrymanTokamak Energyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Bolometer-HTPD-2024.pdf
3.2.23Plasma current measurement in the SMall Aspect Ratio Tokamak (SMART) and in the National Spherical Torus eXperiment Upgrade (NSTX-U)StefanoMunarettoPrinceton Plasma Physics Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Munaretto_Abstract.pdf
3.2.24Optimizing Bandwidth and Flux on an X-ray Streak camera for Laser Produced Plasma SpectroscopyShawnMcPoylePrinceton Plasma Physics Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/McPoyle_2024-HTPD-Abstract.pdf
3.2.25Measurement of Stark-split beam and carbon charge exchange emissions for simultaneous B-field and temperature/rotation analysis at DIII-DRyanAlbostaUniversity of Wisconsin-Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/albosta_ryan_htpd2024.pdf
3.2.26Spatially-resolved TALIF measurements of atomic hydrogen density, temperature, and velocity in the UPP linear plasma deviceKadenLoringStanford Universityhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Loring_Abstract.pdf
3.2.27Calibration techniques for Thomson scattering diagnostics on large fusion experimentsGoloFuchertMax-Planck-Institut für Plasmaphysik (IPP)https://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Fuchert_Abstract.pdf
3.2.28Understanding and modelling gas puff injection for diagnostic purposesAlfonsoRodríguez-GonzálezUniversity of Sevillehttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_A_Rodriguez-Gonzalez_Abstract_Final_vFinal.pdf
3.2.29Imaging-Based Measurements of Helicon Plasma Mode StructureGustavo EliasBartoloWest Virginia Universitthttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Bartolo_Abstract.pdf
3.2.30Spectral ellipsometer for thin layer measurements in fusion applicationsMaciejKrychowiakMax-Planck-Insitute for Plasma Physics, Greifswald, Germanyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Krychowiak-Maciej-Abstract-HTPD-2024-v1.pdf
3.2.31Improving the Single Line of Sight Time-Resolved X-Ray Imager Performance and Recharacterization Using a Short Pulse LaserMichaelMichalkoLaboratory for Laser Energetics, University of Rochesterhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Michalko_Abstract.pdf
3.2.32Quantification and visualization of uncertainty in penumbral imaging of ICF implosionsJustinKunimuneMassachusetts Institute of Technologyhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_JustinKunimune_Abstract.pdf
3.2.33Upgraded Space and Time Resolved Visible Spectroscopic Diagnostic on ADITYA-U TokamakDipexaModiPandit Deendayal Energy University, Gujarat, Indiahttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/Dipexa_Abstract_HTPD2024_010224.pdf
3.2.34Superconducting, Tomographic, Neutron Diagnostics for Fusion Power MonitoringMetteBybjerg BrockTechnical University of Denmark (DTU Physics) and SUBRA A/Shttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Brock_Superconducting_tomographic_neutron_diagnostics_for_fusion_power_monitoring-.pdf
3.2.35Development of a Bolometry Diagnostic for SPARCRebeccaLiCommonwealth Fusion Systemshttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Li_Bolometry.docx.pdf
3.2.36The Infrared Thermography System on the MAST-U TokamakJessicaStobbsUKAEAhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD_2024_J_Stobbs_The-Infrared-Thermography-System-on-the-MAST-U-Tokamak.pdf
3.2.37X-ray sources for in-situ spatial, wavelength and absolute calibrations of the X-ray Imaging Crystal Spectrometer (XICS) for Fusion PlasmasKajalShahPrinceton Plasma Physics Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_KShah_Abstract_Final.pdf
3.2.38Near-UV divertor spectroscopy measurements in support of power exhaust and radiative divertor studies in JETBartLomanowskiOak Ridge National Laboratoryhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/B_Lomanowski_et_al_HTPD2024_abstract.pdf
3.2.39Novel Calibration Approach for the ITER Collective Thomson Scattering DiagnosticSøren BangKorsholmDTU Physics, Technical University of Denmarkhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Korsholm_Abstract.pdf
3.2.40Development of a spatially resolved neutron time-of-flight spectrometer using optical multiplexingLandonTafoyaUniversity of Michiganhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD24_Tafoya.pdf
3.2.41Multivariate analysis of x-ray spectra from high-energy-density laser-produced plasmasEricAndrewCalifornia State Polytechnic University, Pomonahttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/E_Andrew-HTPD-2024-Abstract.pdf
3.2.42Characterization of image plate response to mono-energetic protonsNielsVanderlooPlasma Science and Fusion Center: MIThttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_NielsVanderloo_Abstract.pdf
3.2.43Correlation Electron Cyclotron Emission Radiometry and Modeling in the HSX StellaratorLuquantSinghUniversity of Wisconsin, Madisonhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Luquant_Singh_Abstract.pdf
3.2.44Diagnostics work and capabilities at UKAEANeilConwayUKAEAhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024_Conway_Abstract.pdf
3.2.45Development of frequency multiplying heterodyne receiver and transceiver for millimeter wave plasma diagnosticsDaisukeKuwaharaChubu Universityhttps://htpd2024.ornl.gov/wp-content/uploads/gravity_forms/2-d1fd45ef97b357f18b8cdc3868a2b437/2024/02/HTPD2024-AbstractChubu-Univ.-D.Kuwaharaver2.pdf